
Package: lightsout (via r-universe)
September 13, 2024

Title Implementation of the 'Lights Out' Puzzle Game

Version 0.3.2

Description Lights Out is a puzzle game consisting of a grid of lights
that are either on or off. Pressing any light will toggle it
and its adjacent lights. The goal of the game is to switch all
the lights off. This package provides an interface to play the
game on different board sizes, both through the command line or
with a visual application. Puzzles can also be solved using the
automatic solver included. View a demo online at
<https://daattali.com/shiny/lightsout/>.

URL https://github.com/daattali/lightsout,

https://daattali.com/shiny/lightsout/

BugReports https://github.com/daattali/lightsout/issues

Depends R (>= 3.0.0)

Imports magrittr (>= 1.5), shiny (>= 0.10.0), shinyjs (>= 0.3.0),
stats, utils

Suggests knitr (>= 1.7), testthat (>= 0.9.1), rmarkdown

License MIT + file LICENSE

SystemRequirements pandoc with https support

VignetteBuilder knitr

RoxygenNote 7.2.3

Encoding UTF-8

Repository https://daattali.r-universe.dev

RemoteUrl https://github.com/daattali/lightsout

RemoteRef HEAD

RemoteSha c48ae2485285ab6c152a23061ca96131159006e5

1

https://daattali.com/shiny/lightsout/
https://github.com/daattali/lightsout
https://daattali.com/shiny/lightsout/
https://github.com/daattali/lightsout/issues

2 board_entries

Contents

board_entries . 2
empty_board . 3
is_solvable . 3
is_solved . 4
launch . 5
new_board . 5
play . 6
random_board . 7
solve_board . 8

Index 10

board_entries Get the board entries (configuration of the lights)

Description

Get the board entries (configuration of the lights)

Usage

board_entries(board)

Arguments

board A lightsout board object

Value

A matrix representing the current state of the lights (0 for off, 1 for on) in the board

Examples

board <- random_board(5)
board
board_entries(board)

empty_board 3

empty_board Initialize a Lights Out board with all lights switched off

Description

Initialize a Lights Out board with all lights switched off

Usage

empty_board(size, classic = TRUE)

Arguments

size Number of rows and columns for the board

classic If TRUE, then pressing a light will toggle it and its adjacent neighbours only. If
FALSE, then pressing a light will toggle the entire row and column of the pressed
light.

Value

A lightsout board.

See Also

random_board new_board

Examples

empty_board(5)

is_solvable Is a given Lights Out board solvable?

Description

Not every Lights Out configuration has a solution (this has been mathematically proven). This
function determines whether a given board has a solution or not.

Usage

is_solvable(board)

Arguments

board A lightsout board

4 is_solved

Value

TRUE if the given board has a solution; FALSE otherwise.

See Also

is_solved solve_board

Examples

The following board is solvable using the classic mode (only adjacent lights
are toggled), but has no solution in the variant mode.
lights <- c(1, 1, 0,

1, 0, 0,
0, 0, 0)

board_classic <- new_board(lights)
board_variant <- new_board(lights, classic = FALSE)
is_solvable(board_classic)
is_solvable(board_variant)

is_solved Is the given board is a solved state?

Description

A board is considered solved if all the lights are switched off (have a state of 0).

Usage

is_solved(board)

Arguments

board A lightsout board

Value

TRUE if the given board is solved; FALSE otherwise.

See Also

is_solvable solve_board

launch 5

Examples

Create a board solved with one move and solve it.
lights <- c(1, 1, 0,

1, 0, 0,
0, 0, 0)

board <- new_board(lights)
is_solved(board)
board <- board %>% play(1, 1)
is_solved(board)

launch Run the graphical interface to the game in a web browser

Description

Run the graphical interface to the game in a web browser

Usage

launch()

new_board Initialize a Lights Out board with a given lights configuration

Description

Create a Lights Out board that can be played by the user or solved automatically. Only square boards
of size 3x3, 5x5, 7x7, or 9x9 are supported. The initial lights configuration must be provided. To
create a board with a random configuration, use the random_board function.

Usage

new_board(entries, classic = TRUE)

Arguments

entries The initial configuration of lights on the board. entries can either be a vector
or a matrix. If a vector is used, the vector is assumed to start at the top-left
corner of the board and is read row-by-row. Only values of 0 (light off) and 1
(light on) are allowed in the vector or matrix. See the examples below.

classic If TRUE, then pressing a light will toggle it and its adjacent neighbours only. If
FALSE, then pressing a light will toggle the entire row and column of the pressed
light.

6 play

Value

A lightsout board object.

See Also

random_board play solve_board

Examples

vector <- c(1, 1, 0,
1, 0, 1,
0, 1, 1)

new_board(entries = vector)

matrix <- matrix(
c(1, 1, 0,

1, 0, 1,
0, 1, 1),

nrow = 3, byrow = TRUE)
new_board(entries = matrix)

play Play (press) a single light or multiple lights on a board

Description

In classic mode, pressing a light will toggle it and its four adjacent lights. In variant mode, pressing
a light will toggle it and all other lights in its row and column. Toggling a light means switching it
from on to off or from off to on.

Usage

play(board, row, col, matrix)

Arguments

board A lightsout board

row The row of the light to press. To press multiple lights, use a list of row numbers.
If a list is provided, then the col argument must also be a list of the same length.

col The column of the light to press. To press multiple lights, use a list of column
numbers. If a list is provided, then the row argument must also be a list of the
same length.

matrix Instead of using row and col, a matrix can be used to specify which lights to
press. The matrix must have the same dimensions as the board. Any position
in the given matrix with a value of 1 will result in a press of a light in the same
position in the board.

random_board 7

Value

A new lightsout board object after the given lights are pressed.

See Also

solve_board empty_board new_board random_board

Examples

Create a 5x5 board with all lights switched off and then press some lights

board <- empty_board(5)
board

Press the light at (2,1)
newboard <- play(board, 2, 1)
newboard

Press the light at (2,1) and then at (3,4)
newboard <- board %>% play(2, 1) %>% play(3, 4)
newboard

Press both lights with one call
newboard <- play(board, c(2, 3), c(1, 4))
newboard

Press both lights using a matrix instead of specifying rows and columns
newboard <- play(board, matrix = matrix(

c(0, 0, 0, 0, 0,
1, 0, 0, 0, 0,
0, 0, 0, 1, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0),

nrow = 5, byrow = TRUE))
newboard

Press the same lights, but this time when the game mode is not classic,
and the whole row/column get toggled
empty_board(5, classic = FALSE) %>% play(2, 1)
empty_board(5, classic = FALSE) %>% play(c(2, 3), c(1, 4))

random_board Create a random (but solvable) Lights Out board

Description

Create a Lights Out board that can be played by the user or solved automatically. Only square
boards of size 3x3, 5x5, 7x7, or 9x9 are supported. The initial lights configuration is randomly gen-
erated, but always solvable. To create a board with a user-defined configuration, use the new_board
function.

8 solve_board

Usage

random_board(size, classic = TRUE)

Arguments

size Number of rows and columns for the board

classic If TRUE, then pressing a light will toggle it and its adjacent neighbours only. If
FALSE, then pressing a light will toggle the entire row and column of the pressed
light.

Value

A lightsout board object.

See Also

new_board play solve_board

Examples

set.seed(10)

Create a random 5x5 classic board
board <- random_board(5)
board

Get the solution for the board
solution <- solve_board(board)
solution

Press the lights according to the solution, the result should be a board
with all lights switched off
play(board, matrix = solution)

solve_board Solve a Lights Out board

Description

Given a Lights Out board, find the set of lights that need to be pressed in order to solve the board.
If no solution is possible, an error is thrown.

Usage

solve_board(board)

Arguments

board A lightsout board object.

solve_board 9

Details

There are a few algorithms for solving Lights Out puzzles. This function implements the Gaussian
Elimination technique, which does not guarantee the minimum number of steps. Therefore, some
steps in the given solution may be redundant.

If you are interested, there are many resources online outlining the exact details of how this tech-
nique works, and what the other solving strategies are.

Value

A matrix with the same dimensions as the input board, with a 1 in every position that requires a
press to solve to the board. Note that the order of the light presses does not matter.

See Also

new_board random_board play is_solvable is_solved

Examples

Create an empty 5x5 board, press two lights, and then see that the solution
tells us to press the same lights in order to solve the board.
board <- empty_board(5) %>% play(3, 2) %>% play(4, 1)
board
solution <- solve_board(board)
solution
board <- play(board, matrix = solution)
is_solved(board)

Index

board_entries, 2

empty_board, 3, 7

is_solvable, 3, 4, 9
is_solved, 4, 4, 9

launch, 5

new_board, 3, 5, 7–9

play, 6, 6, 8, 9

random_board, 3, 5–7, 7, 9

solve_board, 4, 6–8, 8

10

	board_entries
	empty_board
	is_solvable
	is_solved
	launch
	new_board
	play
	random_board
	solve_board
	Index

